
Setup: 

Coordinates: 

E: an inertial / fixed frame 

B: a body-fixed frame, of which the positive x direction aligns with the direction of the propeller 

arm relative to the center of mass of the body. The origin lies at the center of mass of the whole 

flyer. 

C: a control frame dependent on the  

State: 

𝜔𝐵𝐸
𝐵 : the angular velocity of the body relative to the inertial frame expressed in the body frame. 

𝐼𝐵
𝐵: the moment of inertia of the body (without the propeller) with respect to the body’s center of 

mass 

𝐼𝑃
𝐵: the moment of inertia of the propeller with respect to the propeller’s center of mass 

𝑒𝑃
𝐵: propeller force direction in the body frame 

𝜏𝑑
𝐵: air frame drag torque 

𝑓𝑃: thrust of the propeller 

𝜏𝑃: torque of the propeller 

u: the output thrust produced by the attitude controller 

∆𝜏: time constant of the motor 

Calculation: 

The linearization is performed by assembling and controlling a state vector s. 

Assume angular velocity, position, linear velocity, and the current thrust can be obtained through 

either IMU or outside localization system. 

 

From Euler’s Second Law, the angular acceleration of the body in the body frame 𝜔̇𝐵𝐸
𝐵  can be 

estimated. 

 

𝐼𝐵
𝐵𝜔̇𝐵𝐸

𝐵 + 𝜔𝐵𝐸
𝐵 × (𝐼𝐵

𝐵𝜔𝐵𝐸
𝐵 ) = 𝑟𝑃

𝐵 × 𝑒𝑃
𝐵𝑓𝐵 + 𝑒𝑃

𝐵𝜏𝑃 + 𝜏𝑑
𝐵 

 

𝐼𝐵
𝐵𝜔̇𝐵𝐸

𝐵 = 𝑟𝑃
𝐵 × 𝑒𝑃

𝐵𝑓𝐵 + 𝑒𝑃
𝐵𝜏𝑃 + 𝜏𝑑

𝐵 − 𝜔𝐵𝐸
𝐵 × (𝐼𝐵

𝐵𝜔𝐵𝐸
𝐵 ) (1) 

 

The angular acceleration of the propeller in the body frame  𝜔̇𝑃𝐸
𝐵  can be calculated from the 

derivative of the input thrust: 

 

𝑓𝑃̇ = (𝑓𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 + 𝑢 − 𝑓𝑃)/∆𝜏  (2) 

 

Total thrust f produced by the propeller has the following relation with the angular velocity of the 

propeller relatively to the earth in the body frame 𝜔𝑃𝐸
𝐵 . 

 (3) 

And 𝜔𝑃𝐸
𝐵  can be decomposed into the angular velocity of the propeller relative to the body and 

the angular velocity of the body relative to the earth. 

 (4) 

In order to implement the simulation, an assumption is made: 𝜔𝑃𝐵
𝐵 ≫ 𝜔𝐵𝐸

𝐵 . Therefore, 

𝜔𝑃𝐸
𝐵 ≈ 𝜔𝑃𝐵

𝐵  

Since 𝜔𝑃𝐵
𝐵 = [0; 0; Ω], where Ω is the scalar rotation speed of the propeller, 



 

Then equation (1) can be solved. 

 

Next, the control frame C is defined such as the following condition is satisfied, where 𝐶𝐶𝐵 is the 

transformation matrix from B to C 

𝑛𝐶 = 𝐶𝐶𝐵𝑛𝐵 = [0; 0; 1] 
where 𝑛𝐵 is the unit vector in the direction of the average angular velocity of the body in the 

body frame when the flyer is in hover state: 

𝑛𝐵 = ±
𝜔𝐵𝐸

𝐵̅̅ ̅̅ ̅̅

|𝜔𝐵𝐸
𝐵̅̅ ̅̅ ̅̅ |

 (10) 

Angular velocity of the body in the control frame: 

𝜔𝐵𝐸
𝐶 = 𝐶𝐶𝐵𝜔𝐵𝐸

𝐵  (11) 

The derivative of the desired acceleration in the body frame 𝑛𝑑𝑒𝑠
𝐵  is calculated by 

𝑛̇𝑑𝑒𝑠
𝐵 = −𝜔𝐵𝐸

𝐵 × 𝑛𝑑𝑒𝑠
𝐵   (12) 

since 𝑛𝑑𝑒𝑠
𝐵  generated by position control is regarded as constant for the attitude control. 

In control frame C, 

𝑛̇𝑑𝑒𝑠
𝐶 = −𝜔𝐵𝐸

𝐶 × 𝑛𝑑𝑒𝑠
𝐶   (13) 

 

Define state s 

 

Let 𝑛𝑑𝑒𝑠
𝐶 = [𝜂1; 𝜂2; 𝜂3] and 𝜔𝐵𝐸

𝐶 = [𝛼1; 𝛼2; 𝛼3] 
 

State s is defined as such: 

𝑠 =

[
 
 
 
 
 
𝜂1

𝜂2

𝛼1

𝛼2

𝛼3

𝑓𝑃 ]
 
 
 
 
 

−

[
 
 
 
 
 

0
0
0
0

±‖𝜔̅𝐵𝐸
𝐵 ‖

𝑓𝑃̅ ]
 
 
 
 
 

 

Notice only x and y components of 𝑛𝑑𝑒𝑠
𝐶  are in s since 𝑛𝑑𝑒𝑠

𝐶  is a unit vector and the third 

component can be calculated from the first 2. 

 

𝑠̇ can be calculated from equations (1) (2) and (13). Define a matrix function  

𝑠̇ = 𝑓(𝑠, 𝑢) 

 

Then the linearized form is 

𝑠̇ = 𝐴𝑠 + 𝐵𝑢 

where attitude thrust output u has the form 

[
 
 
 
 
 
0
0
0
0
0
𝑢]
 
 
 
 
 

. 

The model is linearized around the hover solution, where 



𝑠ℎ𝑜𝑣𝑒𝑟 =

[
 
 
 
 
 
0
0
0
0
0
0]
 
 
 
 
 

  𝑢ℎ𝑜𝑣𝑒𝑟 =

[
 
 
 
 
 
0
0
0
0
0
𝑓𝑃̅]

 
 
 
 
 

 

 

Two matrices A and B are obtained by 

𝐴 = 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛 (
𝜕𝑓

𝜕𝑠
)
ℎ𝑜𝑣𝑒𝑟

 

𝐵 = 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛 (
𝜕𝑓

𝜕𝑢
)
ℎ𝑜𝑣𝑒𝑟
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